Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
نویسندگان
چکیده
We introduce several new black-box reductions that significantly improve the design of adaptive and parameterfree online learning algorithms by simplifying analysis, improving regret guarantees, and sometimes even improving runtime. We reduce parameter-free online learning to online exp-concave optimization, we reduce optimization in a Banach space to one-dimensional optimization, and we reduce optimization over a constrained domain to unconstrained optimization. All of our reductions run as fast as online gradient descent. We use our new techniques to improve upon the previously best regret bounds for parameter-free learning, and do so for arbitrary norms. 1 Parameter Free Online Learning Online learning is a popular framework for understanding iterative optimization algorithms, including stochastic optimization algorithms or algorithms operating on large data streams. For each of T iterations, an online learning algorithm picks a point wt in some space W , observes a loss function lt : W → R, and suffers loss lt(wt). Performance is measured by the regret, which is the total loss suffered by the algorithm in comparison to some benchmark point ẘ ∈ W : RT (ẘ) = T ∑
منابع مشابه
Parameter-free online learning via model selection
We introduce an efficient algorithmic framework for model selection in online learning, also known as parameter-free online learning. Departing from previous work, which has focused on highly structured function classes such as nested balls in Hilbert space, we propose a generic meta-algorithm framework that achieves online model selection oracle inequalities under minimal structural assumption...
متن کاملExamples of the Application of Nonparametric Information Geometry to Statistical Physics
We review a nonparametric version of Amari’s information geometry in which the set of positive probability densities on a given sample space is endowed with an atlas of charts to form a differentiable manifold modeled on Orlicz Banach spaces. This nonparametric setting is used to discuss the setting of typical problems in machine learning and statistical physics, such as black-box optimization,...
متن کاملThe Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph
In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملExtensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces
Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let $u, v$ be positive numbers. In this paper, we show that the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.06293 شماره
صفحات -
تاریخ انتشار 2018